16 research outputs found

    Towards Query Logs for Privacy Studies: On Deriving Search Queries from Questions

    Get PDF
    Translating verbose information needs into crisp search queries is a phenomenon that is ubiquitous but hardly understood. Insights into this process could be valuable in several applications, including synthesizing large privacy-friendly query logs from public Web sources which are readily available to the academic research community. In this work, we take a step towards understanding query formulation by tapping into the rich potential of community question answering (CQA) forums. Specifically, we sample natural language (NL) questions spanning diverse themes from the Stack Exchange platform, and conduct a large-scale conversion experiment where crowdworkers submit search queries they would use when looking for equivalent information. We provide a careful analysis of this data, accounting for possible sources of bias during conversion, along with insights into user-specific linguistic patterns and search behaviors. We release a dataset of 7,000 question-query pairs from this study to facilitate further research on query understanding.Comment: ECIR 2020 Short Pape

    ComQA: A Community-sourced Dataset for Complex Factoid Question Answering with Paraphrase Clusters

    Get PDF
    To bridge the gap between the capabilities of the state-of-the-art in factoid question answering (QA) and what users ask, we need large datasets of real user questions that capture the various question phenomena users are interested in, and the diverse ways in which these questions are formulated. We introduce ComQA, a large dataset of real user questions that exhibit different challenging aspects such as compositionality, temporal reasoning, and comparisons. ComQA questions come from the WikiAnswers community QA platform, which typically contains questions that are not satisfactorily answerable by existing search engine technology. Through a large crowdsourcing effort, we clean the question dataset, group questions into paraphrase clusters, and annotate clusters with their answers. ComQA contains 11,214 questions grouped into 4,834 paraphrase clusters. We detail the process of constructing ComQA, including the measures taken to ensure its high quality while making effective use of crowdsourcing. We also present an extensive analysis of the dataset and the results achieved by state-of-the-art systems on ComQA, demonstrating that our dataset can be a driver of future research on QA.Comment: 11 pages, NAACL 201

    Conversational Question Answering over Passages by Leveraging Word Proximity Networks

    Get PDF
    Question answering (QA) over text passages is a problem of long-standing interest in information retrieval. Recently, the conversational setting has attracted attention, where a user asks a sequence of questions to satisfy her information needs around a topic. While this setup is a natural one and similar to humans conversing with each other, it introduces two key research challenges: understanding the context left implicit by the user in follow-up questions, and dealing with ad hoc question formulations. In this work, we demonstrate CROWN (Conversational passage ranking by Reasoning Over Word Networks): an unsupervised yet effective system for conversational QA with passage responses, that supports several modes of context propagation over multiple turns. To this end, CROWN first builds a word proximity network (WPN) from large corpora to store statistically significant term co-occurrences. At answering time, passages are ranked by a combination of their similarity to the question, and coherence of query terms within: these factors are measured by reading off node and edge weights from the WPN. CROWN provides an interface that is both intuitive for end-users, and insightful for experts for reconfiguration to individual setups. CROWN was evaluated on TREC CAsT data, where it achieved above-median performance in a pool of neural methods.Comment: SIGIR 2020 Demonstration

    CompMix: A Benchmark for Heterogeneous Question Answering

    Full text link
    Fact-centric question answering (QA) often requires access to multiple, heterogeneous, information sources. By jointly considering several sources like a knowledge base (KB), a text collection, and tables from the web, QA systems can enhance their answer coverage and confidence. However, existing QA benchmarks are mostly constructed with a single source of knowledge in mind. This limits capabilities of these benchmarks to fairly evaluate QA systems that can tap into more than one information repository. To bridge this gap, we release CompMix, a crowdsourced QA benchmark which naturally demands the integration of a mixture of input sources. CompMix has a total of 9,410 questions, and features several complex intents like joins and temporal conditions. Evaluation of a range of QA systems on CompMix highlights the need for further research on leveraging information from heterogeneous sources

    CROWN: Conversational Passage Ranking by Reasoning over Word Networks

    Get PDF
    Information needs around a topic cannot be satisfied in a single turn; users typically ask follow-up questions referring to the same theme and a system must be capable of understanding the conversational context of a request to retrieve correct answers. In this paper, we present our submission to the TREC Conversational Assistance Track 2019, in which such a conversational setting is explored. We propose a simple unsupervised method for conversational passage ranking by formulating the passage score for a query as a combination of similarity and coherence. To be specific, passages are preferred that contain words semantically similar to the words used in the question, and where such words appear close by. We built a word-proximity network (WPN) from a large corpus, where words are nodes and there is an edge between two nodes if they co-occur in the same passages in a statistically significant way, within a context window. Our approach, named CROWN, improved nDCG scores over a provided Indri baseline on the CAsT training data. On the evaluation data for CAsT, our best run submission achieved above-average performance with respect to AP@5 and [email protected]: TREC 2019, 14 page

    Explainable Conversational Question Answering over Heterogeneous Sources via Iterative Graph Neural Networks

    Full text link
    In conversational question answering, users express their information needs through a series of utterances with incomplete context. Typical ConvQA methods rely on a single source (a knowledge base (KB), or a text corpus, or a set of tables), thus being unable to benefit from increased answer coverage and redundancy of multiple sources. Our method EXPLAIGNN overcomes these limitations by integrating information from a mixture of sources with user-comprehensible explanations for answers. It constructs a heterogeneous graph from entities and evidence snippets retrieved from a KB, a text corpus, web tables, and infoboxes. This large graph is then iteratively reduced via graph neural networks that incorporate question-level attention, until the best answers and their explanations are distilled. Experiments show that EXPLAIGNN improves performance over state-of-the-art baselines. A user study demonstrates that derived answers are understandable by end users.Comment: SIGIR 2023 Research Track Long Pape

    FAIRY: A Framework for Understanding Relationships between Users' Actions and their Social Feeds

    Full text link
    Users increasingly rely on social media feeds for consuming daily information. The items in a feed, such as news, questions, songs, etc., usually result from the complex interplay of a user's social contacts, her interests and her actions on the platform. The relationship of the user's own behavior and the received feed is often puzzling, and many users would like to have a clear explanation on why certain items were shown to them. Transparency and explainability are key concerns in the modern world of cognitive overload, filter bubbles, user tracking, and privacy risks. This paper presents FAIRY, a framework that systematically discovers, ranks, and explains relationships between users' actions and items in their social media feeds. We model the user's local neighborhood on the platform as an interaction graph, a form of heterogeneous information network constructed solely from information that is easily accessible to the concerned user. We posit that paths in this interaction graph connecting the user and her feed items can act as pertinent explanations for the user. These paths are scored with a learning-to-rank model that captures relevance and surprisal. User studies on two social platforms demonstrate the practical viability and user benefits of the FAIRY method.Comment: WSDM 201
    corecore